skip to main content


Search for: All records

Creators/Authors contains: "Mroz, Austin M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since the structure of supramolecular isomers determines their performance, rational synthesis of a specific isomer hinges on understanding the energetic relationships between isomeric possibilities. To this end, we have systematically interrogated a pair of uranium-based metal–organic framework topological isomers both synthetically and through density functional theory (DFT) energetic calculations. Although synthetic and energetic data initially appeared to mismatch, we assigned this phenomenon to the appearance of a metastable isomer, driven by levers defined by Le Châtelier's principle. Identifying the relationship between structure and energetics in this study reveals how non-equilibrium synthetic conditions can be used as a strategy to target metastable MOFs. Additionally, this study demonstrates how defined MOF design rules may enable access to products within the energetic phase space which are more complex than conventional binary ( e.g. , kinetic vs. thermodynamic) products. 
    more » « less
  2. Chemical shape and size play a critical role in chemistry. The van der Waals (vdW) radius, a familiar manifold used to quantify size by assuming overlapping spheres, provides rapid estimates of size in atoms, molecules, and materials. However, the vdW method may be too rigid to describe highly polarized systems and chemical species that stray from spherical atomistic environments. To deal with these exotic chemistries, numerous alternate methods based on electron density have been presented. While each boasts inherent generality, all define the size of a chemical system, in one way or another, by its electron density. Herein, we revisit the longstanding problem of assessing sizes of atoms and molecules, instead through examination of the local electric field produced by them. While conceptually different than nuclei-centered methods like that of van der Waals, the field assesses chemically affected volumes . This approach implicitly accounts for long-range fields in highly polar systems and predicts that cations should affect more space than neutral counterparts. 
    more » « less
  3. An intriguing new class of two-dimensional (2D) materials based on metal–organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically active dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)